Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.139
Filtrar
1.
Front Immunol ; 15: 1349749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629077

RESUMO

Background: Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections (LRTIs) in young children around the world and an important cause of LRTI in the elderly. The available treatments and FDA-approved vaccines for RSV only lessen the severity of the infection and are recommended for infants and elderly people. Methods: We focused on developing a broad-spectrum vaccine that activates the immune system to directly combat RSV. The objective of this study is to identify CD4+ and CD8+ T-cell epitopes using an immunoinformatics approach to develop RSV vaccines. The efficacy of these peptides was validated through in-vitro and in-vivo studies involving healthy and diseased animal models. Results: For each major histocompatibility complex (MHC) class-I and II, we found three epitopes of RSV proteins including F, G, and SH with an antigenic score of >0.5 and a projected SVM score of <5. Experimental validation of these peptides on female BALB/c mice was conducted before and after infection with the RSV A2 line 19f. We found that the 3RVMHCI (CD8+) epitope of the F protein showed significant results of white blood cells (19.72 × 103 cells/µl), neutrophils (6.01 × 103 cells/µl), lymphocytes (12.98 × 103 cells/µl), IgG antibodies (36.9 µg/ml), IFN-γ (86.96 ng/L), and granzyme B (691.35 pg/ml) compared to control at the second booster dose of 10 µg. Similarly, 4RVMHCII (CD4+) of the F protein substantially induced white blood cells (27.08 × 103 cells/µl), neutrophils (6.58 × 103 cells/µl), lymphocytes (16.64 × 103 cells/µl), IgG antibodies (46.13 µg/ml), IFN-γ (96.45 ng/L), and granzyme B (675.09 pg/ml). In-vitro studies showed that 4RVMHCII produced a significant level of antibodies in sera on day 45 comparable to mice infected with the virus. 4RVMHCII also induced high IFN-γ and IL-2 secretions on the fourth day of the challenge compared to the preinfectional stage. Conclusion: In conclusion, epitopes of the F protein showed considerable immune response and are suitable for further validation.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Criança , Feminino , Humanos , Camundongos , Animais , Idoso , Pré-Escolar , Epitopos de Linfócito T/metabolismo , Granzimas , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Imunoglobulina G , Peptídeos
2.
Sci Adv ; 10(15): eadm8951, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608022

RESUMO

CD8 T cells provide immunity to virus infection through recognition of epitopes presented by peptide major histocompatibility complexes (pMHCs). To establish a concise panel of widely recognized T cell epitopes from common viruses, we combined analysis of TCR down-regulation upon stimulation with epitope-specific enumeration based on barcode-labeled pMHC multimers. We assess CD8 T cell binding and reactivity for 929 previously reported epitopes in the context of 1 of 25 HLA alleles representing 29 viruses. The prevalence and magnitude of CD8 T cell responses were evaluated in 48 donors and reported along with 137 frequently recognized virus epitopes, many of which were underrepresented in the public domain. Eighty-four percent of epitope-specific CD8 T cell populations demonstrated reactivity to peptide stimulation, which was associated with effector and long-term memory phenotypes. Conversely, nonreactive T cell populations were associated primarily with naive phenotypes. Our analysis provides a reference map of epitopes for characterizing CD8 T cell responses toward common human virus infections.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Humanos , Alelos , Regulação para Baixo , Peptídeos
3.
Front Immunol ; 15: 1377535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601147

RESUMO

Introduction: We investigated the potential role of HLA molecular mismatches (MM) in achieving stable chimerism, allowing for donor-specific tolerance in patients undergoing combined living donor kidney and hematopoietic stem cell transplantation (HSCT). Methods: All patients with available DNA samples (N=32) who participated in a phase 2 clinical trial (NCT00498160) where they received an HLA mismatched co-transplantation of living donor kidney and facilitating cell-enriched HSCT were included in this study. High-resolution HLA genotyping data were used to calculate HLA amino acid mismatches (AAMM), Eplet MM, three-dimensional electrostatic mismatch scores (EMS-3D), PIRCHE scores, HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence MM, and KIR ligands MM between the donor and recipient in both directions. HLA MM were analyzed to test for correlation with the development of chimerism, graft vs. host disease (GvHD), de novo DSA, and graft rejection. Results: Follow-up time of this cohort was 6-13.5 years. Of the 32 patients, 26 developed high-level donor or mixed stable chimerism, followed by complete withdrawal of immunosuppression (IS) in 25 patients. The remaining six of the 32 patients had transient chimerism or no engraftment and were maintained on IS (On-IS). In host versus graft direction, a trend toward higher median number of HLA-DRB1 MM scores was seen in patients On-IS compared to patients with high-level donor/mixed chimerism, using any of the HLA MM modalities; however, initial statistical significance was observed only for the EMS-3D score (0.45 [IQR, 0.30-0.61] vs. 0.24 [IQR, 0.18-0.36], respectively; p=0.036), which was lost when applying the Bonferroni correction. No statistically significant differences between the two groups were observed for AAMM, EMS-3D, Eplet MM, and PIRCHE-II scores calculated in graft versus host direction. No associations were found between development of chimerism and GvHD and non-permissive HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence, and KIR ligands MM. Conclusion: Our results suggest an association between HLA-DRB1 molecular mismatches and achieving stable chimerism, particularly when electrostatic quality of the mismatch is considered. The non-permissive HLA-DPB1 T-cell epitope group, HLA-B leader sequence, and KIR ligands MM do not predict chimerism and GvHD in this combined kidney/HSCT transplant patient cohort. Further work is needed to validate our findings. Clinical trial registration: https://clinicaltrials.gov/study/NCT00498160, identifier NCT00498160.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Doadores Vivos , Epitopos de Linfócito T , Cadeias HLA-DRB1 , Teste de Histocompatibilidade , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/etiologia , Rim , Antígenos HLA-B
4.
Parasit Vectors ; 17(1): 165, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556882

RESUMO

BACKGROUND: Trichomonas vaginalis is the most common nonviral sexually transmitted disease (STI) worldwide. Vaccination is generally considered to be one of the most effective methods of preventing infectious diseases. Using AP65, AP33 and α-actinin proteins, this research aims to develop a protein vaccine against Trichomonas vaginalis. METHODS: Based on the B-cell and T-cell epitope prediction servers, the most antigenic epitopes were selected, and with the necessary evaluations, epitope-rich domains of three proteins, AP65, AP33, and α-actinin, were selected and linked. Subsequently, the ability of the vaccine to interact with toll-like receptors 2 and 4 (TLR2 and TLR4) was assessed. The stability of the interactions was also studied by molecular dynamics for a duration of 100 nanoseconds. RESULTS: The designed protein consists of 780 amino acids with a molecular weight of 85247.31 daltons. The results of the interaction of the vaccine candidate with TLR2 and TLR4 of the immune system also showed that there are strong interactions between the vaccine candidate protein with TLR2 (-890.7 kcal mol-1) and TLR4 (-967.3 kcal mol-1). All parameters studied to evaluate the stability of the protein structure and the protein-TLR2 and protein-TLR4 complexes showed that the structure of the vaccine candidate protein is stable alone and in complex with the immune system receptors. Investigation of the ability of the designed protein to induce an immune response using the C-ImmSim web server also showed that the designed protein is capable of stimulating B- and T-cell lymphocytes to produce the necessary cytokines and antibodies against Trichomonas vaginalis. CONCLUSIONS: Overall, our vaccine may have potential protection against Trichomonas vaginalis. However, for experimental in vivo and in vitro studies, it may be a good vaccine candidate.


Assuntos
Parasitos , Trichomonas vaginalis , Vacinas , Animais , Trichomonas vaginalis/metabolismo , Actinina/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas de Protozoários/metabolismo , 60444 , Receptor 4 Toll-Like/metabolismo , Vacinas/metabolismo , Epitopos de Linfócito T , Simulação de Acoplamento Molecular
5.
BMC Vet Res ; 20(1): 144, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641595

RESUMO

BACKGROUND: Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS: The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS: This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.


Assuntos
Infecções por Campylobacter , Doenças dos Bovinos , Vacinas , Animais , Bovinos , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Vacinologia , Epitopos de Linfócito T/química , Genitália , Biologia Computacional , Doenças dos Bovinos/prevenção & controle
6.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618960

RESUMO

Merkel cell carcinoma (MCC) is an aggressive, fast-growing, highly metastatic neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is an oncogenic driver in the majority of MCC tumors. In this issue of the JCI, Hansen and authors report on their tracking of CD8+ T cells reactive to MCPyV T antigen (T-Ag) in the peripheral blood of 26 patients with MCC who were undergoing frontline anti-programmed cell death protein-1 (anti-PD-1) immunotherapy. They discovered unique T cell epitopes and used the power of bar-coded tetramers to portray immune checkpoint inhibitor-induced immunogenicity as a predictor of clinical response. These findings provide the foundation for therapeutic possibilities for MCC, including vaccines and adoptive T cell- and T cell receptor-driven (TCR-driven) treatments.


Assuntos
Carcinoma de Célula de Merkel , Polyomavirus , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/terapia , Polyomavirus/genética , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos , Epitopos de Linfócito T
7.
Virol J ; 21(1): 67, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509569

RESUMO

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas , Animais , Humanos , Virus da Influenza A Subtipo H5N1/genética , Epitopos de Linfócito T/genética , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Epitopos de Linfócito B , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Vacinas de Subunidades/genética
8.
J Exp Clin Cancer Res ; 43(1): 87, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509571

RESUMO

BACKGROUND: We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP). METHOD: A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers. Homologous peptides were selected from the Cancer Antigenic Peptide Database, as well as Bacteroidetes/Firmicutes-derived peptides. They were incubated with CD8 + T cells from the peripheral blood of HLA-A*02:01 healthy individuals (n = 10) and cancer patients (n = 16). T cell recognition was identified using tetramer-staining analysis. Cytotoxicity assay was performed using as target cells TAP-deficient T2 cells loaded with MoA or the paired TuA. RESULTS: A total of 66 unique pMHC recognized by CD8+ T cells across all groups were identified. Of these, 21 epitopes from microbiota were identified as novel immunological targets. Reactivity against selected TAAs was observed for both HS and CP. pMHC tetramer staining confirmed CD8+ T cell populations cross-reacting with CTA SSX2 and paired microbiota epitopes. Moreover, PBMCs activated with the MoA where shown to release IFNγ as well as to exert cytotoxic activity against cells presenting the paired TuA. CONCLUSIONS: Several predicted microbiota-derived MoAs are recognized by T cells in HS and CP. Reactivity against TAAs was observed also in HS, primed by the homologous bacterial antigens. CD8+ T cells cross-reacting with MAGE-A1 and paired microbiota epitopes were identified in three subjects. Therefore, the microbiota can elicit an extensive repertoire of natural memory T cells to TAAs, possibly able to control tumor growth ("natural anti-cancer vaccination"). In addition, non-self MoAs can be included in preventive/therapeutic off-the-shelf cancer vaccines with more potent anti-tumor efficacy than those based on TAAs.


Assuntos
Epitopos de Linfócito T , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Antígenos de Neoplasias , Peptídeos/química
9.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543838

RESUMO

The SARS-CoV-2 Omicron sub-variants BA.2.86 and JN.1 contain multiple mutations in the spike protein that were not present in previous variants of concern and Omicron sub-variants. Preliminary research suggests that these variants reduce the neutralizing capability of antibodies induced by vaccines, which is particularly significant for JN.1. This raises concern as many widely deployed COVID-19 vaccines are based on the spike protein of the ancestral Wuhan strain of SARS-CoV-2. While T cell responses have been shown to be robust against previous SARS-CoV-2 variants, less is known about the impact of mutations in BA.2.86 and JN.1 on T cell responses. We evaluate the effect of mutations specific to BA.2.86 and JN.1 on experimentally determined T cell epitopes derived from the spike protein of the ancestral Wuhan strain and the spike protein of the XBB.1.5 strain that has been recommended as a booster vaccine. Our data suggest that BA.2.86 and JN.1 affect numerous T cell epitopes in spike compared to previous variants; however, the widespread loss of T cell recognition against these variants is unlikely.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Epitopos de Linfócito T/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Linfócitos T , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Int J Biol Macromol ; 265(Pt 2): 130754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508555

RESUMO

The COVID-19 pandemic has emerged as a critical global health crisis, demanding urgent and effective strategies for containment. While some knowledge exists about epitope sequences recognized by human immune cells and their activation of CD8+ T cells within the HLA context, comprehensive information remains limited. This study employs reverse vaccinology to explore antigenic HLA-restricted T-cell epitopes capable of eliciting durable immunity. Screening reveals 187 consensus epitopes, with 23 offering broad population coverage worldwide, spanning over 5000 HLA alleles. Sequence alignment analysis highlights the genetic distinctiveness of these peptides from Homo sapiens and their intermediate to high TAP binding efficiency. Notably, these epitopes share 100 % sequence identity across strains from nine countries, indicating potential for a uniform protective immune response among diverse ethnic populations. Docking simulations further confirm their binding capacity with the HLA allele, validating them as promising targets for SARS-CoV-2 immune recognition. The anticipated epitopes are connected with suitable linkers and adjuvant, and then assessed for its translational efficacy within a bacterial expression vector through computational cloning. Through docking, it is observed that the chimeric vaccine construct forms lasting hydrogen bonds with Toll-like receptor (TLR4), while immune simulation illustrates an increased cytotoxic response aimed at CD8+ T cells. This comprehensive computational analysis suggests the chimeric vaccine construct's potential to provoke a robust immune response against SARS-CoV-2. By delineating these antigenic fragments, our study offers valuable insights into effective vaccine and immunotherapy development against COVID-19, contributing significantly to global efforts in combating this infectious threat.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinologia , Pandemias/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Epitopos de Linfócito B , Biologia Computacional , Vacinas de Subunidades
11.
Front Immunol ; 15: 1369890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495891

RESUMO

Aeromonas hydrophila, a gram-negative coccobacillus bacterium, can cause various infections in humans, including septic arthritis, diarrhea (traveler's diarrhea), gastroenteritis, skin and wound infections, meningitis, fulminating septicemia, enterocolitis, peritonitis, and endocarditis. It frequently occurs in aquatic environments and readily contacts humans, leading to high infection rates. This bacterium has exhibited resistance to numerous commercial antibiotics, and no vaccine has yet been developed. Aiming to combat the alarmingly high infection rate, this study utilizes in silico techniques to design a multi-epitope vaccine (MEV) candidate against this bacterium based on its aerolysin toxin, which is the most toxic and highly conserved virulence factor among the Aeromonas species. After retrieval, aerolysin was processed for B-cell and T-cell epitope mapping. Once filtered for toxicity, antigenicity, allergenicity, and solubility, the chosen epitopes were combined with an adjuvant and specific linkers to create a vaccine construct. These linkers and the adjuvant enhance the MEV's ability to elicit robust immune responses. Analyses of the predicted and improved vaccine structure revealed that 75.5%, 19.8%, and 1.3% of its amino acids occupy the most favored, additional allowed, and generously allowed regions, respectively, while its ERRAT score reached nearly 70%. Docking simulations showed the MEV exhibiting the highest interaction and binding energies (-1,023.4 kcal/mol, -923.2 kcal/mol, and -988.3 kcal/mol) with TLR-4, MHC-I, and MHC-II receptors. Further molecular dynamics simulations demonstrated the docked complexes' remarkable stability and maximum interactions, i.e., uniform RMSD, fluctuated RMSF, and lowest binding net energy. In silico models also predict the vaccine will stimulate a variety of immunological pathways following administration. These analyses suggest the vaccine's efficacy in inducing robust immune responses against A. hydrophila. With high solubility and no predicted allergic responses or toxicity, it appears safe for administration in both healthy and A. hydrophila-infected individuals.


Assuntos
Inteligência Artificial , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Vacinas , Humanos , Aeromonas hydrophila , Diarreia , Viagem , Aprendizado de Máquina , Epitopos de Linfócito T , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
12.
Vet Med Sci ; 10(3): e1438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555573

RESUMO

INTRODUCTION: Lumpy skin disease, an economically significant bovine illness, is now found in previously unheard-of geographic regions. Vaccination is one of the most important ways to stop its further spread. AIM: Therefore, in this study, we applied advanced immunoinformatics approaches to design and develop an effective lumpy skin disease virus (LSDV) vaccine. METHODS: The membrane glycoprotein was selected for prediction of the different B- and T-cell epitopes by using the immune epitope database. The selected B- and T-cell epitopes were combined with the appropriate linkers and adjuvant resulted in a vaccine chimera construct. Bioinformatics tools were used to predict, refine and validate the 2D, 3D structures and for molecular docking with toll-like receptor 4 using different servers. The constructed vaccine candidate was further processed on the basis of antigenicity, allergenicity, solubility, different physiochemical properties and molecular docking scores. RESULTS: The in silico immune simulation induced significant response for immune cells. In silico cloning and codon optimization were performed to express the vaccine candidate in Escherichia coli. This study highlights a good signal for the design of a peptide-based LSDV vaccine. CONCLUSION: Thus, the present findings may indicate that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response, which should help in developing an effective vaccine towards controlling LSDV infection.


Assuntos
Vírus da Doença Nodular Cutânea , Vacinas , Animais , Bovinos , Proteínas de Membrana , Epitopos de Linfócito T , 60444 , Simulação de Acoplamento Molecular , Escherichia coli , 60470
13.
ACS Nano ; 18(13): 9584-9604, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513119

RESUMO

Current cancer vaccines using T cell epitopes activate antitumor T cell immunity through dendritic cell/macrophage-mediated antigen presentation, but they lack the ability to promote B/CD4 T cell crosstalk, limiting their anticancer efficacy. We developed antigen-clustered nanovaccine (ACNVax) to achieve long-term tumor remission by promoting B/CD4 T cell crosstalk. The topographic features of ACNVax were achieved using an iron nanoparticle core attached with an optimal number of gold nanoparticles, where the clusters of HER2 B/CD4 T cell epitopes were conjugated on the gold surface with an optimal intercluster distance of 5-10 nm. ACNVax effectively trafficked to lymph nodes and cross-linked with BCR, which are essential for stimulating B cell antigen presentation-mediated B/CD4 T cell crosstalk in vitro and in vivo. ACNVax, combined with anti-PD-1, achieved long-term tumor remission (>200 days) with 80% complete response in mice with HER2+ breast cancer. ACNVax not only remodeled the tumor immune microenvironment but also induced a long-term immune memory, as evidenced by complete rejection of tumor rechallenge and a high level of antigen-specific memory B, CD4, and CD8 cells in mice (>200 days). This study provides a cancer vaccine design strategy, using B/CD4 T cell epitopes in an antigen clustered topography, to achieve long-term durable anticancer efficacy through promoting B/CD4 T cell crosstalk.


Assuntos
Vacinas Anticâncer , Nanopartículas Metálicas , Neoplasias , Camundongos , Animais , 60547 , Epitopos de Linfócito T , Ouro , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Microambiente Tumoral
14.
Cancer Res Commun ; 4(4): 958-969, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506662

RESUMO

Mimotopes of short CD8+ T-cell epitopes generally comprise one or more mutated residues, and can increase the immunogenicity and function of peptide cancer vaccines. We recently developed a two-step approach to generate enhanced mimotopes using positional peptide microlibraries and herein applied this strategy to the broadly used H-2Kb-restricted murine leukemia p15E tumor rejection epitope. The wild-type p15E epitope (sequence: KSPWFTTL) was poorly immunogenic in mice, even when combined with a potent peptide nanoparticle vaccine system and did not delay p15E-expressing MC38 tumor growth. Following positional microlibrary functional screening of over 150 mimotope candidates, two were identified, both with mutations at residue 3 (p15E-P3C; "3C," and p15E-P3M; "3M") that better induced p15E-specific CD8+ T cells and led to tumor rejection. Although 3M was more immunogenic, 3C effectively delayed tumor growth in a therapeutic setting relative to the wild-type p15E. As 3C had less H-2Kb affinity relative to both p15E and 3M, 15 additional mimotope candidates (all that incorporated the 3C mutation) were assessed that maintained or improved predicted MHC-I affinity. Valine substitution at position 2 (3C2V, sequence: KVCWFTTL) led to improved p15E-specific immunogenicity, tumor rejection, and subsequent long-term antitumor immunity. 3C, 3M, and 3C2V mimotopes were more effective than p15E in controlling MC38 and B16-F10 tumors. T-cell receptor (TCR) sequencing revealed unique TCR transcripts for mimotopes, but there were no major differences in clonality. These results provide new p15E mimotopes for further vaccine use and illustrate considerations for MHC-I affinity, immunogenicity, and functional efficacy in mimotope design. SIGNIFICANCE: The MHC-I-restricted p15E tumor rejection epitope is expressed in multiple murine cancer lines and is used as a marker of antitumor cellular immunity, but has seen limited success as a vaccine immunogen. An in vivo screening approach based on a positional peptide microlibraries is used to identify enhanced p15E mimotopes bearing amino acid mutations that induce significantly improved functional immunogenicity relative to vaccination with the wild-type epitope.


Assuntos
Neoplasias , Vacinas , Animais , Camundongos , Neoplasias/terapia , Peptídeos , Epitopos de Linfócito T/genética , Receptores de Antígenos de Linfócitos T
15.
Front Immunol ; 15: 1345195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510258

RESUMO

Non-mutated FVIII-specific CD4 T cell epitopes have been recently found to contribute to the development of inhibitors in patients with hemophilia A (HA), while auto-reactive CD4 T cells specific to FVIII circulate in the blood of healthy individuals at a frequency close to the foreign protein ovalbumin. Thus, although FVIII is a self-protein, the central tolerance raised against FVIII appears to be low. In this study, we conducted a comprehensive analysis of the FVIII CD4 T cell repertoire in 29 healthy donors. Sequencing of the CDR3ß TCR region from isolated FVIII-specific CD4 T cells revealed a limited usage and pairing of TRBV and TRBJ genes as well as a mostly hydrophobic composition of the CDR3ß region according to their auto-reactivity. The FVIII repertoire is dominated by a few clonotypes, with only 13 clonotypes accounting for half of the FVIII response. Through a large-scale epitope mapping of the full-length FVIII sequence, we identified 18 immunodominant epitopes located in the A1, A3, C1, and C2 domains and covering half of the T cell response. These epitopes exhibited a broad specificity for HLA-DR or DP molecules or both. T cell priming with this reduced set of peptides revealed that highly expanded clonotypes specific to these epitopes were responsible individually for up to 32% of the total FVIII repertoire. These FVIII T cell epitopes and clonotypes were shared among HLA-unrelated donors tested and previously reported HA patients. Our study highlights the role of the auto-reactive T cell response against FVIII in HA and its similarity to the response observed in healthy individuals. Thus, it provides valuable insights for the development of new tolerance induction and deimmunization strategies.


Assuntos
Epitopos de Linfócito T , Hemofilia A , Humanos , Fator VIII , Linfócitos T CD4-Positivos , Antígenos HLA-DR/genética
16.
Sci Rep ; 14(1): 5999, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472237

RESUMO

Powassan virus (POWV) is an arthropod-borne virus (arbovirus) capable of causing severe illness in humans for severe neurological complications, and its incidence has been on the rise in recent years due to climate change, posing a growing public health concern. Currently, no vaccines to prevent or medicines to treat POWV disease, emphasizing the urgent need for effective countermeasures. In this study, we utilize bioinformatics approaches to target proteins of POWV, including the capsid, envelope, and membrane proteins, to predict diverse B-cell and T-cell epitopes. These epitopes underwent screening for critical properties such as antigenicity, allergenicity, toxicity, and cytokine induction potential. Eight selected epitopes were then conjugated with adjuvants using various linkers, resulting in designing of a potentially stable and immunogenic vaccine candidate against POWV. Moreover, molecular docking, molecular dynamics simulations, and immune simulations revealed a stable interaction pattern with the immune receptor, suggesting the vaccine's potential to induce robust immune responses. In conclusion, our study provided a set of derived epitopes from POWV's proteins, demonstrating the potential for a novel vaccine candidate against POWV. Further in vitro and in vivo studies are warranted to advance our efforts and move closer to the goal of combatting POWV and related arbovirus infections.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Vacinas Virais , Humanos , Simulação de Acoplamento Molecular , 60444 , Epitopos de Linfócito B , Epitopos de Linfócito T , Biologia Computacional/métodos , Vacinas de Subunidades
17.
J Transl Med ; 22(1): 266, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468254

RESUMO

BACKGROUND: The clinical routine test of HBV-specific T cell reactivity is still limited due to the high polymorphisms of human leukocyte antigens (HLA) in patient cohort and the lack of universal detection kit, thus the clinical implication remains disputed. METHODS: A broad-spectrum peptide library, which consists of 103 functionally validated CD8+ T-cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and fits to the HLA polymorphisms of Chinese and Northeast Asian populations, was grouped into eight peptide pools and was used to establish an ELISpot assay for enumerating the reactive HBV-specific T cells in PBMCs. Totally 294 HBV-infected patients including 203 ones with chronic hepatitis B (CHB), 13 ones in acute resolved stage (R), 52 ones with liver cirrhosis (LC) and 26 ones with hepatocellular carcinoma (HCC) were detected, and 33 CHB patients were longitudinally monitored for 3 times with an interval of 3-5 months. RESULTS: The numbers of reactive HBV-specific T cells were significantly correlated with ALT level, HBsAg level, and disease stage (R, CHB, LC and HCC), and R patients displayed the strongest HBV-specific T cell reactivity while CHB patients showed the weakest one. For 203 CHB patients, the numbers of reactive HBV-specific T cells presented a significantly declined trend when the serum viral DNA load, HBsAg, HBeAg or ALT level gradually increased, but only a very low negative correlation coefficient was defined (r = - 0.21, - 0.21, - 0.27, - 0.079, respectively). Different Nucleotide Analogs (NUCs) did not bring difference on HBV-specific T cell reactivity in the same duration of treatment. NUCs/pegIFN-α combination led to much more reactive HBV-specific T cells than NUCs monotherapy. The dynamic numbers of reactive HBV-specific T cells were obviously increasing in most CHB patients undergoing routine treatment, and the longitudinal trend possess a high predictive power for the hepatitis progression 6 or 12 months later. CONCLUSION: The presented method could be developed into an efficient reference method for the clinical evaluation of cellular immunity. The CHB patients presenting low reactivity of HBV-specific T cells have a worse prognosis for hepatitis progression and should be treated using pegIFN-α to improve host T-cell immunity.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Biblioteca de Peptídeos , Epitopos de Linfócito T/uso terapêutico , Cirrose Hepática , DNA Viral
18.
MAbs ; 16(1): 2329321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494955

RESUMO

Antibody-mediated delivery of immunogenic viral CD8+ T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8+ T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the N- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Anticorpos , Neoplasias/terapia
19.
Sci Rep ; 14(1): 6737, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509174

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Vacinas Virais , Abelhas , Humanos , Animais , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Epitopos de Linfócito B , Epitopos de Linfócito T , Biologia Computacional/métodos , Simulação de Acoplamento Molecular
20.
Virus Res ; 343: 199355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490580

RESUMO

Influenza viruses are notorious for their capacity to evade host immunity. Not only can they evade recognition by virus-neutralizing antibodies, there is also evidence that they accumulate mutations in epitopes recognized by virus-specific CD8+T cells. In addition, we have shown previously that human influenza A viruses were less well recognized than avian influenza viruses by CD8+T cells directed to the highly conserved, HLA-A*02:01 restricted M158-66 epitope located in the Matrix 1 (M1) protein. Amino acid differences at residues outside the epitope were responsible for the differential recognition, and it was hypothesized that this reflected immune adaptation of human influenza viruses to selective pressure exerted by M158-66-specific CD8+T cells in the human population. In the present study, we tested this hypothesis and investigated if selective pressure exerted by M158-66 epitope-specific CD8+T cells could drive mutations at the extra-epitopic residues in vitro. To this end, isogenic influenza A viruses with the M1 gene of a human or an avian influenza virus were serially passaged in human lung epithelial A549 cells that transgenically express the HLA-A*02:01 molecule or not, in the presence or absence of M158-66 epitope-specific CD8+T cells. Especially in the virus with the M1 gene of an avian influenza virus, variants emerged with mutations at the extra-epitopic residues associated with reduced recognition by M158-66-specific T cells as detected by Next Generation Sequencing. Although the emergence of these variants was observed in the absence of selective pressure exerted by M158-66 epitope-specific CD8+T cells, their proportion was much larger in the presence of this selective pressure.


Assuntos
Fluprednisolona/análogos & derivados , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Substituição de Aminoácidos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Vírus da Influenza A/genética , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...